Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks
نویسندگان
چکیده
Financial market dynamics forecasting has long been a focus of economic research. A stochastic time effective function neural network (STNN) with principal component analysis (PCA) developed for financial time series prediction is presented in the present work. In the training modeling, we first use the approach of PCA to extract the principal components from the input data, then integrate the STNN model to perform the financial price series prediction. By taking the proposed model compared with the traditional backpropagation neural network (BPNN), PCA-BPNN and STNN, the empirical analysis shows that the forecasting results of the proposed neural network display a better performance in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, HS300, S&P500 and DJIA in the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. & 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Forecasting Stock Market Using Wavelet Transforms and Neural Networks and ARIMA (Case study of price index of Tehran Stock Exchange)
The goal of this research is to predict total stock market index of Tehran Stock Exchange, using the compound method of ARIMA and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. First, the series of price index was decomposed by wavelet transform, then the smooth's series predicted by using...
متن کاملInvestigation of Some Technical Indexes in Stock Forecasting Using Neural Networks
Training neural networks to capture an intrinsic property of a large volume of high dimensional data is a difficult task, as the training process is computationally expensive. Input attributes should be carefully selected to keep the dimensionality of input vectors relatively small. Technical indexes commonly used for stock market prediction using neural networks are investigated to determine i...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملFinancial Time Series Prediction Using Elman Recurrent Random Neural Networks
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 156 شماره
صفحات -
تاریخ انتشار 2015